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Fermion creation and annihilation

In many body physics, we are usually interested in the behavior of a system containing many particles when
subject to external disturbances.

One very revealing way of probing the nature of the many body state of a given system is to remove a
particle (usually a fermion) from the system.

This disturbs the system, as this system has to now antisymmetrise its many body wavefunction with one
less fermion.

The state of the system with one less fermion ceases to be stationary and it evolves with time.

We then replace the fermion we had removed. The system now is going to be in a very different state that
the original one we started off with since it was evolving in a non-stationary way when there was one less
fermion.

Comparing this new state and the starting state (both of which have the same number of particles) reveals a
great deal about the nature of the quasiparticles in the system.

Quasiparticles are fermions which appear to be the particles that the system is made of when probed rather
than the original microscopic entities the system is actually made of.

The overlap between the new state and the starting state containing the same number of particles is known
as the single-particle Green function - quantity of central interest to the subject.



Creating and annihilating fermions are accomplished by operators denoted by

_I.
Cp and Cp

These obey the following algebraic properties known as (fermion) commutation rules.
_ T T _
{c,, cpr} = 0 {cp Cyp = 0

t) _
{CP’Cp’} = Op,pf

where
{A,B} =AB+BA



Chiral Fermions

Chiral fermions are fermions that come with an additional discrete index similar to spin projection.
They are called right movers and left movers — similar to up spin and down spin.

The right and left movers are postulated to move with a constant speed independent of their momentum.
This means their (kinetic) energies are proportional to their respective momenta.

The right movers have energy + vy p and the left movers have energy —vg p

where p is the momentum of the right and left moving fermion and vy is the magnitude of the speed
known as Fermi velocity.

This speed is independent of the momentum and is analogous to the speed of light in relativity. The
fermions have energy proportional to the momentum is anaglous to massless particles in relativistic
theories.
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The Hamiltonian of free chiral fermions

Right movers : c;r,R and cpp
o AT
Leftmovers :c,;, and cp)

_ T T
H = ZVF P ChorCpR — EVF P CpiCpL
14 14



Fermion commutation rules:

{Cp,R . Cp’,R} — {Cp,R . Cp',L} - {Cp,L ’ Cp’,R} — {CP,L ’ Cp',L} =0

T T _ T T _ ) .71 T ) .1 T _
{CP,R’Cp’,R} — {CP;R’Cp’,L} _{CP;L’Cp’,R} _{CP;L’C}D,,L} = 0



Real Space Forms

We assume anti periodic boundary conditions: y,(x + L) = —,,(x)
where v = R, L

1 .
Yy (x) = ﬁ ze—pr Cpv
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Real space commutation rules

(W, (), Y, (x)}=0

{¢V(x) ’ l/JI, (x,)} = 61/,1/’ S(x —x")

where 6(x — x") is the antiperiodic Dirac Delta function.

5(x —x’) — % Zp e—ip(x—x’)



Density of chiral fermions: Normal ordering

Naively we think of density of quantum particles being related to the field as
follows:
Py () = P (), (%)

The problem with definition is that the average of this operator diverges. This is
understandable since the number of right movers are infinite as are the number of
left movers even though the length of the system is fixed.

To remedy this we definite instead the density fluctuation which is the deviation
from the average density. But instead of sticking with the infinite average density
we employ a device known as “point splitting” which means writing:

py (x) = Limg o () (x + a)ih,, (x) — < Py (x + @), (x) >¢)



Note that while < 1/)3: ()P, (x) >, isinfinite, < I/JI (x + a)y,(x) >, is finite
and the above expression is mathematically well defined. It is possible to
define the Fourier components of the density also. This is easier to write down

mathematically as issues such as point splitting are important in real space.
We write (v = R,L),

_ T
Pg>0R = Xk Cxr Ck+q.R

_ T
Pg<o,L = Dk Ck L Ck+q,L

k=475, +-
L

“|=|



Chiral anomaly

Normally, we expect density at different point but at equal times to
commute. This is because for ordinary (not chiral) fermions we are
accustomed to thinking of density in momentum space as,

Pq = Ze_iqx"

n

where x,, is the position of the n-th fermion. Since the positions at equal
times commute amongst themselves we expect the following result,

[pq 'pq’] =0



But this is not always the case for chiral fermions. To see why, let us try to compute,

Qn = [pq,v 'pq’,v’]

Instead of actually computing this, first let us show that this quantity is proportional to the identity operator. The way to do
this is to show that it commutes with all other operators in the problem, specifically,

T T
Co,R CpLs CpRr:Cp L

[Cp,R , On ] — [[Cp,R yPq,v ], pq',v'] T [pq,v ) [Cp,R »Pq’,v’]]

[Cp,R yPq,v | =0 Q)5V,R Cp+q,R
[Cp,R ,qu,vl ] o 9(v,q,)5v',R Cp+q',R



[Cp,R ) Qn ] — V,Re(q) [Cp+q,RJ pq’,v’] + [pq,v GC+q',R ]81/',Re(q,)
of,
[Cp,R ,Qn | = 5V,R9(CI)9(C]') 6v’,R Cp+q+q' R — 6,0, R0(q)6(q") Cpt+q'+qR =0

Similarly,

[C;,R: n ] — [[C;,R' Pq,v ]: pq’,v’] [pq,v ) [C;,R'pq',v’] |

[C;F,R: pq,v] - = v,RG(Q)C;_q,R

[C;,R' pq’,v’] — —5VI’R6(q’)c;_q,’R



[CJ,R: On ] — _SV,RB(CI) [C;;—q,R' pq’,v’] - 6v’,Re(q’) [Pq,v ) C;—q’,R]
but

T _ T
Cp—q’,R’ pq,v] — _5V,RG(CI)Cp_qI_q,R
[C-|L / /] = — 9( )C
p—q.R' Pq' v VR q p—q'—q,R
Hence,
[c)rr Qn ] = 8, 26,20(@)0(q" V) _i_ = 8,1 Ry RO(DO(G )] _ i, =0



This means we have proved [C;,R’ Qn] =0 and [¢cyr,0n ] = 0.

Similarly we may prove [C;’L, Qn] =0 and [¢,} ,Qn ] = 0 (homework)

This means (,, is independent of the fermions and is proportional to the identity operator.
The proportionality factor may be thought of as the average with respect to the ground state
of the system.

Op =<Qn > 1

If |G> is the ground state of the system described by two chiral fermions with all negative
energies filled and positive energies empty, by construction,

_ T _
Pg>or|G >= Xk Crp Chaqr|G>=0

_ T _
Pg<oLlG >= Xk Cpp Chqr |G >=0



This means

< Qn>=<G||pgy pgr]|G>=0

Thus, Q,, = [pq,v ,pqr,vr] =<Q, >1=0

Next we look at the commutator: Qa = [pq,v ) p;, v']

We may show that this also commutes with all the fermions so that it is also proportional to
the identity. But crucially, the proportionality factor which is the expectation value of the
above operator with respect to the ground state is (sometimes) nonzero

— this is known as the chiral anomaly.



Examine the commutator, [Cp R Qa] — [[Cp R Pq, V] p ] [pq V7 Cp R ,Oq, v/]]

_ T T _ T
Pq>0,R = Z Ck.r Ck+q,R Pg'>or = 2 Ck+q' R CK.R
k k

[Cp,R ) Qa] — H(CI) 5v,R [Cp+q,R: 'D;’,v’] + 9(61’) 5v’,R [pq,v: Cp—q’,R]
[Cp+q,R' p;ll-r’v/] — H(CI,) 6v’,R Cp+q—q’,R; [pq,v» Cp—q’,R] — _Q(CI) 6v,R Cp+q—q’,R

[Cp,R ) Qa] — H(q) 5V,R0(q,) 51}’,R Cp+q_q”R o H(CI,) 61/”R9(q) 5’\/,R Cp+q-q’,R
or

[ Qal = (@) 8,20(0") 8,11 Cprqgr = 0€") 6,1,20(0) By g = O



Thus |cyr,Qu| =0
Similarly we may conclude, [Cg’R ,Qa] =0
and [Cp’L,Qa] =0

and [C;’L,Qa] = (

This means

Uy =<Qq>1



But,
G >

<Q,>=<G ‘ [pq,v ,p;,,v,] ‘G >=<G ‘pq,v por
or,

< Qo> = <Glpgy Pl

5qq 1/1/’ H(q) 6VRZ<G|CRR Ck+CIRC£+qRCkR|G>

T T
+6q,q’6v,v’ 9(_61) 6v,L 2 < Glck,[, Ck+q,L Ck+q,L Ck,LlG >
k

— 6q}q'6v,v’ H(q) 6V,R 2 1 + 6(_61) 6V,L 2 1

—q<k<0 —q>k>0

L
— 5q q’5vv’ _T[ (‘9(51) 5v,R q — 9(_61) 5V,L CI)



vql
v >

0)

< Qg> =96, O(v q)

This means,

o g7 ] = 0 08 [pus 2l ] =80 000

H

Chiral Anomaly




Recap

* We defined chiral fermions
* We defined density of right movers and left movers

* We showed that unlike ordinary fermions the
density operators of chiral fermions don’t commute
amongst themselves.

* We derived explicit forms of these commutators and
showed they are proportional to the identity
operator when they are not zero.



Bosonization of chiral fermions:

Using the chiral anomaly idea, we may define canonical boson creation and annihilation operators. Set

b - 2T

q>0R = oL Pq,R
2T

bq<O,L = gL Pq,L

These obey canonical boson commutation rules:

[bq,RerI,R] — [bq,R»bqr,L] —

[bq R» bqr L]

[bq R» bqr R]

[bq,L: bql,R] — [bq,L» bql,L]

— [qu’bqu] =0

— [qu,b

q’,L

|=1

=0



Normal Ordering

Recall that we said that the kinetic energy of free chiral fermions was written
as

H=HR+HL

where

_ T
Hp = ZVF P CprCp,R

and



The problem with this definition is that the eigenvalues of
Hp & H; are (negative) infinities when acting on the ground
state, for example. We want to define all in such a way that in
the ground state, the eigenvalues are zero instead of infinite.
This is accomplished through what is known as normal ordering
which is just a clever way of subtracting the infinities and only
considering the excitations from the ground state.

We define normal ordered kinetic energy of right movers as:

: . T T
* Hp: = z VE D ChrCpr T 2 VF P C—pRC_pR
p>0 p>0



It is easy to see that the difference between this and the original Hp is an
(infinite) constant.

L _ T T T
:Hp: —Hp = ZVF D CprCpr T ZVF P C—pRC_pR —ZVF P CpRrCpR
p>0 p>0 p

Or,

LI _ T T
Hp: —Hp = ZVF P CpRC_pR — Z:VF D CpRrCpR
»>0 »<0

_ E: + + _ E: _
= VF D (C—p,R C_prT C_pR C—p,R) = VP p= lo
p>0 p>0



It is easy to see that the eigenvalue of : Hy: on the ground state
is zero. Therefore : Hp: measure the kinetic energy of excited states
relative to the ground state (also known as Virasoro primary state)

:Hp: |G >=0
Similarly we may definite normal ordered left moving kinetic energy.

: - T T
p<0 <0

H;: |G >=0



Similarly, we define normal ordered number of right movers as:

: - T T
t Np: = Z( Cp,r Cp,R ~ C—p,R C_pR)
p>0

For left movers

: - T T
Ny = ) (b epn —cpu )
p<0

:Np: |G >=0 and :N;,:|G>=0



We may also define normal ordered momentum of right movers as:

. . T T
P Pp: = z p (Cp,R Chpr T C_pR C—p,R)
p>0

For left movers

. D . — T T
Pi= ) (e cpr + cpucty)
<0

Pp:|G >=0 and P :|G>=0



Virasoro Primary State

For the bosonization scheme to work, it is sufficient for the
ground state to be characterised by the eigenvalues of : Nj:,:
Pp: and: N;:,: P;: . These eigenvalues don’t have to be zero.
The general “Virasoro Primary State” is the ground state
characterized by the eigenvalues

NR|G>:NR|G>andPR|G>:PR|G>

Similarly for left movers. Note that N, can be positive,
negative or zero since it measures deviation from the state
where all these eigenvalues vanish.



VIRASORO PRIMARY STATE OF A SYSTEM
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f Np is the eigenvalue of : Np:, the Virasoro Primary State

| 27N
nas these properties ( kp = nL )
f —0 - _
Cp<kF,R|G>_O ; Cp>kp,r|G > =0

bq>O,R‘G >=0
Using these definitions we may calculate the eigenvalue of

: R T T
: Pp: = 2 D (cp,R Cpr T C_pR c_p,R)
»>0



Therefore,

ZPR: |G > = zp (C}-?I-,R Cp,R‘G > 4 C—p,R Cip,R‘G >)

>0
Now,

e} r Cpr |G >= 0(kp —p) |G >

C_pR cip’RIG >= 0(—p —kp)|G >

For example, assume kz > 0, in this case only the first term
survives.  : Ppi|G > = 2 s psoP |G >



L (kg L kf
But Lkp>p>oP = o J0 p ap — -

L 12nNg2nNg _ Nf

22 L L L

This means the eigenvalue of the momentum is

nN}%
L

:PR:‘G>: ‘G>



Expressing Kinetic energy & Momentum of
Chiral Fermions in Terms of Bosons

The central claim of bosonization is that all
operators and  properties that can be

described/computed using the right (left) moving

fermion operators cg,R,cp,R (or cg,L,cp,L Jmay

equally well be described and computed using the
boson operators bq>OR ,bg=o,r (OF bq<OL ybg<o,L)



The goal now is to express : Hp: (or: H;: )

in terms of the boson operators bq>0 R Dg>0R

(or bq<0 L~ bCI<0,L)'

But first we want to prove the following intuitively
obvious results:

[bq>OR' NR:] — O & [bq>O,R»:NR:] — O
and ['HR'I:NR:] :O;[:PR:’:NR:] = (



To prove [b;>o,R ,: Np:| = 0 we first show that this

commutator commutes with all the fermions. This
means that it is proportional to the identity operator.
Then we show that the proportionality factor is in fact
zero. This somewhat roundabout method is needed
for chiral fermions since the presence of anomalies

may lead us to draw incorrect conclusions, if we are
not careful.



Examine,

[Ck.r» [b:;r>o,R , i Ne: || = [lckr) b:;r>o,R |,: Ng: |
T [b21L>0,R ,[Cr,rr i Nt ]]

: 2T ¢
byr = q_L Ck+q,R CkR
\ K
Now,
21 LN t
(i [bgsor * Nr: 11 = |7 kgt Nrt ]+ [Dgsor » Cir]



or,

[Ck.r) [b2;>o,R ,: Np: ||

Similarly,

Ofr,

2T

2T

qL

Ck—q,R

.I.
Ck+q,R'

o q_L Ck—q,R =

+ [bY ok [ch gr: N2 1]

: Ng: |— [b:;r>o,R €

.I.
k,R

]



27’[.'.

[ClJcr,R' [bCJ[r>O,R i Np: ]| = —| q_LCk+q,R':NR:]_ [b21L>o,R 'CiJcr,R]
\

2T 21T+ o
B ,/q_LCk+q,R w/qL Ck+qR ~ 0

Thus [b:;r>o,R ,: Np: | commutes with all the fermions and is

therefore proportional to the identity operator. As usual the
proportionality factor is its expectation value.

[bisor i Nri] =< G| [b)sgr i Ng:]IG> 1



But < G [b;>0,R ,: Np: |[|G >
= < G| bl.o g Npi|G >—< Gl: Ng: b} o 5|G >
=0

Because,

: Np: |G >= Ny|G > and < G|: Np: = Np < G|
This means

[b2;>0,R ,: Np: ] = 0 which also means

[bq>O,R ,iNg:] =0




Now we have to prove that
|:Hgp:,: Np:| =0 & |:Pr:,: Np:| =0
This is left as a HOMEWORK to the reader.

First prove that |: Hr:,: Ng: | & [: Pg:,: Np:|
commute with all the fermions and therefore

proportional to the identity. Their averages are
trivially zero.



The next interesting questions are [b2;>0’R i Ppi] =? & [bysor i Pr:] =7

—

t Po:1= [ |22y, of : Pp:
[bq>0,R;-PR'] T [V gL Zk Ck+q,R Ck,RJ'PR']
or
2T + 2T + 2T +
q—Lz Ck+q,R Ck,R':PR: — CI_LZ Ck_|_q’R [Ck,R!:PR:] + q_LZ[Ck+q,R':PR:]Ck,R
N I N7 Nk
or,

[CR,R':PR:] =k Ck,R

[Chsqm Pri]l=—(k+a) ¢l ygn



or,

[b;r>0,R ,: Ppi]

2T +
k Ck,R —

— C
L k+q,R
1 k

\

an:
qL -

(bl sor i Pri]l =—qb

Similarly,

(k+q) ¢ vo g Cor

[bq>O,R ,+Pri] =q bq>O,R



This means we should be able to write,

: Pp: —quq>0R q>0,R .L.
q>0

The claim is that this operator is identical to

: R T 1)
: Pp: = z D (CP’R Cpr T C_pR c_p,R)
p>0

Just because : Py: in the first bosonized form properly commutes with
the bosons bq>0 g Dg>o g @and : Ni: does not mean it is going to
commute properly with the fermions



We have to show that

. 1 — + T :N:% o
[CP,R x PR'] = [Cp,R :Zq>0 q bq>O,R bq>O,R + —LR ] = PCyRr

But,

.|_ . M
Cp,R » Z q bq>O,R bq>0,R + I
q>0

m[cpr,:N:g iN:g  m:N:ip [cpr,:Nig ]

— 2 q[Cp,R ) b;lI->O,R] bq>O,R + Z q b;II->O,R [Cp,R ) bq>0,R] + L + L
q>0 q>0



But,

[Cp,R ) : PR :]_ —
o 2T mcy,r:Nig T Nip cpp
— Z q _L Cp—q,R bq>0,R + z q bJI->O,R _L Cp+q,R T L T L
o 1 q>0 VY
Or,

27T + 27T +
[Cp,R ) PR:] = T Cp—q,RCx RCk+q,R T Tck+q,R Cik,RCp+q,R

q>0,k q>0,k
T T T T
T Cpr 2ike>ol Ck R Ck,R — C—k,R C_k,R) 4 T 2ge>ol Ck R Ck,R — C—k,R C_k,R) Cp.R
L L

Is this the same as [Cp,R )t PR:] =P CyR ?7?



But the commutators

[bq,R , PR:] =q bg>or

and

|:Ng:,: Pp:| =0

come out right (HOME WORK) in the bosonic language as well as the fermionic language.

T:N:5%
: PR —quq>0R bg>o,r T
q>0
o - + T :N:%g
Hp : = vg : Pp Zq>0 VF{ bq>O,R bq>O,R T Vp 7



Interactions between Chiral Fermions

The Interaction eTergy between right movers Is

5 f dx f dx'v(x —x") pr(x)pr(x’)
The Interaction energy between left movers Is

[ dx f dx' v = x) p()py(x)

where v(x — x") is the two body potential. Between right and left
movers it could be something else

1
5 J dx | dx" w(x —x") (pr(x)p,(x") + pr(x)pr(x")



Note that we suggested that pr(x) be defined as,

pr(x) = Limg o (P (x + Q)pp(x) — < P (x + A)pr(x) >o)
It is more convenient to define it in the usual way viz.

pr(¥) = (PEEOPR(X) = < PFEOPR() >0 )
Except the right movers have a lower energy bound which in the end tends to
infinity:

1 .
Yr(x) = \/_Z z e P cpr

P>—Kmax
and

lp-I-(X) :i Z eip’xc'l‘
R \/Z p’,R

p,>_kmax



_ T
Pq>0,R = 2 Ck R Ck+q,R
k

Wi YR () =< Wl O)WR(x) >,

_1 e—iquT c

i T —<cf >
7 ( Ck RCK,R Ckr Ck,R <0 )
k>—Kmax



This makes sense only if

1
<Pl Y@ >0=7 ) <clp >0

K>—Kmax
IS finite. But,

< CZ’R Ck,R >O: H(kp — k)

1

so that < z/J,‘; )Y pr(x) >0 = - Z_kmax<k<kF IS finite.



This means py (x) be written as

1 .
_ —-igx AT
pr(x) = T Z e 1" ¢y p CkaqR
! i t
- qx
T L Z q4<0,k>—Kmax, K+q>—kmax € Ck,R Ck+q,R



When taking k,,,,, — oo limit we have to ensure that

1 t t
sz>—kmax( Ck RCk,R —<Ckr Ck,R 0)

remains finite. This Is going to be the case If we postulate
that all states in the Hilbert space of a practical problem have
the property they are fully occupied k < —k, for some
large but fixed k., even when interactions are present.

Thus we may write,
pr(x)
1 . + 1 » + _
= — Z e 1% Cpp Crrgrt T Z e 1% ¢, g Ckyqr + x — independent terms

L L
q>0,k q<0.k



1 . 1 .
=7 z e tax c,i’R Ck+qr T 7 Z et4* C,Lq’R Ckgr + x — independent terms
q>0,k q> 0.k
or
1 qlL . 1 qlL . + _
pr(x) =7 z 5 ‘9% by gt T Z . e' 1% b, p +x — independent terms
q>0 N n q>0 N n
1 —qL . 1 —qL |
pr(x) = T Z - e ‘9% byt T z S e 1% b, | + x — independent terms
q<0 N " q< 0 N n




We assert that [ dx’ v(x —x') = 0 so that
% J dx [ dx' v(x —x") pr(x)pr(x")

1 —
=Efdxfdx v(x — )—Z e t9% p, +e”7berR) 2

q>0 q'>0

p—idq x’ iq x' .t
5 byt et F Bl )

Set,

vix —x') = Z Vg el a(x—x')

q>0

o~ =

Or,

~ [ dx [ dx' v(x = x') pr(x)pr(x")

1
— ’ AN -iqgx qu T
Zfdxfdxv(x x) /27'[( by r Zn b
q>0 q>0

1 ’ N1 L . L B
+Efdxfdx V(X—X)qu>0\/% (equb;,R)qu’>0 ‘;_n( iq'x' b,




1 , , N1 q 1 9
> Jdx | dx" v(x —x") pr(x)pr(x") = 5 z anqR b;r,R +§ z Vq% chIr,qu,R
q>0 q>0

We postulate that vy = 0 when |q| > A. This allows us to write,

1 !/ !/ !/ q -I-
Vep = > [dx [ dx' v(x —x") pr(x)pr(x") = const. + Z Va5 by rbg R
q>0
Similarly,
1 !/ !/ !/ q -l-
Vi = ) [dx [dx'vix —x") p,(x)p.(x") = const. + z Va5 - b_,1b_qL

q>0
Now,

1
5 Jdx | dx" wlx —x") (pr()pL(x") + pr(x)pr(x"))



This means, Vg, = % Jdx [ dx" w(x —x") (Pr (oL (x") + pL(xX)pr(x')) =

1 q t t
52q>0 Wq g (bq,R b—q,L + b—q,L bq,R)

The total Hamiltonian of both right and left movers together with mutual
interactions is,

H=: HR: +:HL: +VRR + VLL + VRL

+ mT:N:%
. HR: — 2 Vr(d bq,R bq,R + \"x
q>0

+ mT:N:%
:HL: — z VFq b—q,L b—q,L + VF
q>0



Diagonalization of the bosonized Hamiltonian

The full Hamiltonian including interactions is,

Vg + mT:N:%
H = Z(Vp‘l‘E)CIbq’R bq,R +VF 7
N
L

q>0

Vg U .
* 2 (VF 27T) qblgubqi+vr
q>O

.I-
z Wq 5= (bar b_gi+ bly,blp)
q>0




We postulate that the diagonalized form is as shown
below,

+ + m:N:5 m:N:#
H = -Qq,l dq,ldCI;l -+ .Q.q,2 dqudqu —+ Vi T I Vi 7
where,
_ T T
dg1 = |dg1,bgr|bgr + |P-gr dg1|bl,,
and,

dg, = [dg, ,bfq’L]b_q,L + [bg &, dq,z]bg;,R



\%
g1 dg1 = [dql'H]:(VF_I_ﬁ)Q[dql’b;rR] YR
v
+(VF+ﬁ)quqL[dq1'b-qL]
1 q t T
+§Wq E (bqR [dq1;b—q,L]+b qL[dql’bqR])

T

+ ~wy = ([dg2 br 1b-qu + [dgz,bT 4, 157 R)






This means,

VvV
(Qy+Vrq + q ==

VvV
(Qy+ Veq + q ==

1 q

27_[) [dq 1 b—q L] = — EWq % [dq,l ) bjl-,R | = Cg,1
1 q

271) [dg2 bgr | = — > Wa ﬁ[dql ’biq,L] = Cq,2



C
q,1

|d
q,1- b—q,L] —

C
q,2

[dg1, b}
q,1 )bq,R] - =

[dq,z ) b-l-
—q,L] —
1
q



Cg1 Cg1
dq1=_1 : qbQ»R_ - Vg biCIL
>Wq 57 (Qq+veq + Clﬁ)
and,
Cg,2 Cg,2

But [dg1,dl 1] =[dgadl,] =1,[dg1,dg2] =0

1
Cq1 = 1 2 ( 1 >2
1 o \%
sWe 5= \(QqH+Vrq +q52)




Correlation Functions of Interacting Systems

- T
pr(x) = I Z /Ee L4* b qR+ , 21 €' b
q>0 q>0
/ , - T
pL(x) _L Z Eequ —qL+ 2T qub—qL
q>0 q>0

Of interest are correlation functions such as < pp (x,t) pr(x’,t') > and
< pp (x,t) p.(x',t") > etc. From the above relations it is clear that evaluating this

is possible if we are first able to evaluate correlations such as < b,z (t)b;,R (t") >,
<bggr (£) by (t") >



bgr = [bq,R' dz;,1]dq,1 — [bg r» dq,z]dz;,z
and,

b_gi = [b-qr di2]dg2 — [b-qu dgld? ;
So that

2
< byr (Db R(t") >= [bgp,dl ] < dg(® df (&) >
2 ,
= |bgr d:zra] et g (711
and
< bgr (b_q (t") > = [bgp,dg4][b-q1 d,]e™" P =)



The central claim of bosonization

One of the central claims of bosonization of chiral fermions is that the two operators below are
identical in all respects.

: N:3

T
:Ppi= quq>OR g>0R T
q>0

The claim is that this operator is identical to

. - T T
: Pp: = Z D (cp,R Cpr + C_pr c_p’R)
p>0
where

. L T T
Nei = ) (Chrcr = prchyr)

p>0

2T ¥
bg>or = q_Lz Ck,R Ck+qR
K



If Np isthe eigenvalue of : Ny:, the Virasoro primary state |G >
27TNR )

L

has these properties ( kr =
1) — 0 - —
Cp<kF,R‘G>_O ) Cp>kF,R G>_O

bq>O,R‘G >=0

:NR‘G>:NR‘G>



Examine,

[CP>O,R i Ppi] = [¢p,r Z q b21L>0,R bgsor +
q>0

The claim is that this is the same as

[Cp>0,R ) PR:] = P Cp>o,R




21T 2T mcy,r:N:ig M Nig Cyp
[Cp>0,R»‘PR5]:PCp,R:z q qL Cp—q,R bq>OR+z qbq>OR q_LCp+q,R+ 7 + 7
q>0 q>0
Pre-multiply by a creation operator
T T
21T 21T TC, pCpp : N: mC,p:Nip C
T — / Tt ot p,R*D,R * VR p,R ViR CpR
PCprCp,R = z _L pRCp—q,R bgsor + z qCpr Dg>or q_L Cp+qR T I + I
q>0 q>0
Post-multiply by the same creation operator
2T " T Cypr:N:pg C;’R m:N:ip Cpp C;,R
p CpRCpR 2 Cp q.R bq>0RCpR + z q bq>OR q_L Cp+qRCpR T I + L
q>0 q>0
Adding the two
.I.
’ 21 T Cpr [ Nig, pR] n[cp,R,:N:R]cp,R 2m :N:p
p _z Cp q,R [bq>0R» ;R] +2 [pR'b;II->OR] qL Cp+qR+ L + L + L
q>0 q>0



T T
2T Tcyr [:N:ig,cyr]l mlc,p,iNig JCpr  2m :N:
T T T b, p,R p,R p, R
q>O,R'Cp,R] + Z Q[Cp,R ) bq>o,R] oL Cp+qr T I + I + L
. N - T |
+ 2m T epr 1 Nig,cyrl  Tlepp,iNig Jcpr  2m :Nip
Cp—aR Cp—qRr~ | “ptaR Cp+q,R T I + I + I
g>0
. . T T
t Npi = 2( Cp,R Cp,R ~ C—pR C_pR)
p>0
2m ; 2 TCprCor T CypCpr 2 :Nip
7 Cp-qR Cp—qRr— z T p+q,R Cp+q,R + L _ L L

q>0

q>0






B 2T ¥ T 2T + B 2T T
p = TG T ), Gaon = ) T T

o< p'<yp p=p'>0 o< p'<syp
, 2n,+1 2n'+1 : :
Write p = ( pL i ;p = ( nL i . The above sum is over integers fromn’ = 0,1,2,, ey Ny
2T T
=—n,+1)— —=

THUS THE PROOF IS NOW COMPLETE. IT IS NOT KNOWN TO MOST PEOPLE WORKING
IN THE FIELD. MOST IN FACT DON’T EVEN REALISE THE IMPORTANCE OF PROVING
THIS RESULT.



SEE PDF ATTACHMENTS OF PROF. DUNCAN HALDANE’S PROOFS



Finding the Full Green Function

‘Ijg(x, t) = i el PR (L) el OrR ol QR(xt)

VL

CpR(x t) _nNR 4 i z —lC[X bq’R(t)

q>0

(X t) _T[NR——lE qu b'l'R(t)

q>O

W, (x,t) = % ol PR(XE) =i ORp—i PR(X,L)



e!%® N, |Ns >= Ni |1+ Ni >
Npel9R |Np >= (Ni + 1)|1 + N >
eieR ‘NR > = ‘1+NR >

NReiHR _ eiHR NR — eiHR

—L OR NR eieR — NR +1



<9l (2, th¥; (x,0) >

1 o . L
— = < el @R plORpIQR(XE) o=l pR(X1) o=l OR o=l PR(X,) >
L

<@l (', tHWs (x, 1) >
_ 1 < el PRt piet PR pp(x't)e R ,—ielOR pf(x,)e™ PR ,—i pR(x1t) <,
L

Since
e' %R f(Ng) e '9r= f(e'9R Npe '9R) = f(N, — 1)



<9l (2, tWYx (x,0) >

1 . (x'=x) . o . o
— o i T £l oR(X) ol or(X ) p-l @R (x) ol QR(XE) S

L

< Wl (x', thWs (x,t) >

F— vam igx’ pt 4 V21 o—iqx' p
_ %ein(zzvR—n(xL—x) - ezq>ome by r(t") , Zq>oﬁ bgr(t"

V2m V2T _;
~ Lg>o0 et 1% b;r,R(t) Yg>o—¢€ 1% bgRr(t)
e vak e Vit >



<9l (', tHW, (x, 1) >

— %el”(ZN —1)(x—x) < eZ‘PO%ei“’ by R(t") e‘£q>o%e_iqx’ bgr(t"
o ZPO% e bg,R(t) echo\/@ ~L4X po r(t) g

<wl (', t)W, (x,t) >

_ %ein(ZNR—l) (x'L_x) - ezq>o\/\/2:7zeiqx b*R(t’) ) Zq>0\/\/2:7z e—iqx' bor(t")
. Zq>0% el d beR(t) ezq>0\/\/% -l x b r(t) g



<9l (¢, tHW, (x, ) >

F_ V2 igx’ T / 21 _l-qxl ,
- %eln(ZNR_l) (xLX) < ezq>0\/ﬁe b R(t) o Zq>0\/ﬁ bq}R(t)

Zq>o% 1 chIr,R(t) eZq>o\/\/% e 1% by p(t)

>

bq;R (t) — [dq,z ) biq,L]dq,le_l 'Q'q t _ [b—q,L' dq,l]d;ll-Jz el .Qq t



bar(t) = [dg. ,biq,L]dq,le_qu b —[b_q, dq,1]d;2 ol gt

bEIL,R (t) = |dg.2, biq,L]dz;Jei ' — [b_g 1, dg1ldg, et t'
< bq,R(t)bq’,R(t,) > = O
< bqr (t)b;r,,R (t) >=644|dgz biq,L][dq,Z ‘ biq,L]e_i %q (t-)

< b;/,R(t’)bq,R(t) > = 5q,q’[b—q,L» dq,l][b—q,L; dq’l]eiﬂq (t—t"



<@l (', tHWs (x, 1) >

ol T (2NR=1) (x _x) o Zq>oq T <b} p(t")bgr(t)>

1
L , ,
T —

Zq>0q Lelq(x X) <b;,R(t’)bq’R(t)>

zq>0q” eldx=x) < by ()b} L (0)>

2T
o~ Za>05 T <Par(Dbgr()>

< b;}R (t)bg r(t") > etc.have all been caculated previously



CONCLUSIONS

 Chiral bosonization is a powerful tool for studying homogeneous interacting fermions
when the total number of right and left movers are separately conserved.

L Although the formalism relies on exact mathematical identities, studying systems which do
not separately conserve the number of right movers or left movers but only the total number of
right and left movers is difficult. This latter system occurs frequently for example when we consider
“backward scattering” where there is a sigh change in the momentum of fermions after scattering.

O Therefore although the formalism when such processes are present may be formally written down,
using them is unwieldy and relies on approximations.

A This is the reason why in our group we invented “NON-CHIRAL BOSONIZATION”



f

BUT THAT IS'ANOTHER STORY

« : '




